DNA recognition by nuclear receptors

Author:

Claessens Frank1,Gewirth Daniel T2

Affiliation:

1. Department of Molecular Cell Biology, Faculty of Medicine, Campus GHB O/N, Herestraat 49, 3000 Leuven, Belgium

2. Department of Biochemistry, Duke University Medical Center, Durham, NC, U.S.A.

Abstract

The nuclear receptors constitute a large family of ligand-inducible transcription factors. The control of many genetic pathways requires the assembly of these nuclear receptors in defined transcription-activating complexes within control regions of ligand-responsive genes. An essential step is the interaction of the receptors with specific DNA sequences, called hormone-response elements (HREs). These response elements position the receptors, and the complexes recruited by them, close to the genes of which transcription is affected. HREs are bipartite elements that are composed of two hexameric core half-site motifs. The identity of the response elements resides in three features: the nucleotide sequence of the two core motif half-sites, the number of base pairs separating them and the relative orientation of the motifs. The DNA-binding domains of nuclear receptors consist of two zinc-nucleated modules and a C-terminal extension. Residues in the first module determine the specificity of the DNA recognition, while residues in the second module are involved in dimerization. Indeed, nuclear receptors bind to their HREs as either homodimers or heterodimers. Depending on the type of receptor, the C-terminal extension plays a role in sequence recognition, dimerization, or both. The DNA-binding domain is furthermore involved in several other functions including nuclear localization, and interaction with transcription factors and co-activators. It is also the target of post-translational modifications. The DNA-binding domain therefore plays a central role, not only in the correct binding of the receptors to the target genes, but also in the control of other steps of the action mechanism of nuclear receptors.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3