Mammalian sterile 20-like kinase 3 (MST3) mediates oxidative-stress-induced cell death by modulating JNK activation

Author:

Chen Ce-Belle1,Ng Jowin K. W.1,Choo Poh-Heok1,Wu Wei1,Porter Alan G.1

Affiliation:

1. Cell Death and Human Disease Group, Division of Cancer and Developmental Cell Biology, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore 138673

Abstract

MST3 (mammalian sterile 20-like kinase 3) is a sterile 20 kinase reported to have a role in Fas-ligation- and staurosporine-induced cell death by unknown mechanism(s). We found that MST3-deficient cells are resistant to H2O2, which was reversed by reconstituting recombinant MST3. H2O2-induced JNK (c-Jun N-terminal kinase) activation was greatly enhanced in shMST3 cells (a cell line treated with short hairpin RNA against MST3). Suppression of JNK activity by the inhibitor SP600125 or by dominant-negative JNK2 re-sensitized cells to H2O2. Furthermore, c-Jun Ser-63 phosphorylation was augmented in shMST3 cells, whereas JunAA (dominant-negative c-Jun) reduced H2O2 resistance, implicating an AP-1 (activator protein 1) pathway in H2O2-induced survival signalling. Total cytoprotective HO-1 (haem oxygenase 1) expression, which was attenuated by JunAA, was induced up to 5-fold higher in shMST3 cells compared with controls. Zinc protoporphyrin IX, a potent inhibitor of HO reversed the H2O2-resistance of shMST3 cells. Our results reveal that H2O2-induced MST3-mediated cell death involves suppressing both a JNK survival pathway and up-regulation of HO-1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3