Resolution of two ADP-ribosylation factor 1 GTPase-activating proteins from rat liver

Author:

RANDAZZO Paul A.1

Affiliation:

1. 1Laboratory of Biological Chemistry, Division of Basic Sciences, National Cancer Institute, Bldg. 37, Rm 5D-02, 37 Convent Dr MSC 4255, Bethesda, MD 20892-4255, U.S.A.

Abstract

ADP-ribosylation factor 1 (ARF1) is a 21 kDa GTP-binding protein that regulates multiple steps in membrane traffic. Here, two ARF1 GTPase-activating proteins (GAPs) from rat liver were resolved. The GAPs were antigenically distinct. One reacted with a polyclonal antibody raised against the GAP catalytic peptide previously purified by Makler et al. [Makler, Cukierman, Rotman, Admon and Cassel (1995) J. Biol. Chem. 270, 5232–5237], and here is referred to as GAP1. The other GAP (GAP2) did not react with the antibody. These GAPs differed in phospholipid dependencies. GAP1 was activated 3–7-fold by the acid phospholipids phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidic acid (PA) and phosphatidylserine (PS). In contrast, GAP2 was stimulated 20–40-fold by PIP2. PA and PS had no effect by themselves but PA increased GAP2 activity in the presence of PIP2. The GAPs were otherwise similar in activity. In the presence of phosphoinositides, the Km of GAP1 for ARF1–GTP was estimated to be 8.1±1.6 μM and the dissociation constant for ARF1–guanosine 5′,3-O-(thio)triphosphate (GTP[S]) was 7.4±2.2 μM. GAP2 was similar with a Km for ARF1–GTP of 5.4±1.2 μM and a dissociation constant for ARF1–GTP[S] of 4.8±0.3 μM. Similarly, no differences were found in substrate preferences. Both GAP1 and GAP2 used ARF1 and ARF5 as substrates but not ARF6 or ARF-like protein-2. The potential role of multiple ARF GAPs in the independent regulation of ARF at specific steps in membrane traffic is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3