Non-enzymic glycation of human extracellular superoxide dismutase

Author:

Adachi T1,Ohta H1,Hirano K1,Hayashi K1,Marklund S L2

Affiliation:

1. Department of Pharmaceutics, Gifu Pharmaceutical University, Gifu 502, Japan.

2. Department of Clinical Chemistry, Umeå University Hospital, 901-85 Umeå, Sweden.

Abstract

The secretory enzyme extracellular superoxide dismutase (EC-SOD) is in plasma heterogenous with regard to heparin-affinity and can be divided into three fractions, A that lacks affinity, B with intermediate affinity and C with high affinity. The C fraction forms an equilibrium between the plasma phase and heparan sulphate proteoglycan on the surface of the endothelium. In vitro EC-SOD C could be time-dependently glycated. The enzymic activity was not affected in glycated EC-SOD, but the high heparin-affinity was lost in about half of the studied glycated fraction. Addition of heparin decreased the glycation in vitro, and EC-SOD C modified with the lysine-specific reagent trinitrobenzenesulphonic acid could not be glycated in vitro. The findings suggest that the glycation sites are localized rather far away from the active site and may occur on lysine residues in the heparin-binding domain in the C-terminal end of the enzyme. The proportion of glycated EC-SOD in serum of diabetic patients was considerably higher than in normal subjects. Of the subfractions, EC-SOD B was by far the most highly glycated, followed by EC-SOD A. EC-SOD C was glycated only to be a minor extent. The findings suggest that glycation is one of the factors that contribute to the heterogeneity in heparin-affinity of plasma EC-SOD. Since this phenomenon is increased in diabetes, the cell-surface-associated EC-SOD may be decreased in this disease, increasing the susceptibility of cells to superoxide radicals produced in the extracellular space.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3