A critical role for citrate metabolism in LPS signalling

Author:

O'Neill Luke A. J.1

Affiliation:

1. School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland

Abstract

Macrophage activation is a key event in the inflammatory process, since these cells produce a range of pro-inflammatory molecules, including ROS (reactive oxygen species), prostaglandins, cytokines and nitric oxide. These factors promote inflammation by causing vasodilation and recruitment of neutrophils, monocytes and lymphocytes, which ultimately clear infection and repair damaged tissue. One of the most potent macrophage activators is the Gram-negative-derived bacterial cell wall component LPS (lipopolysaccharide). LPS is sensed by TLR4 (Toll-like receptor 4) and triggers highly complex signalling pathways that culminate in activation of transcription factors such as NF-κB (nuclear factor κB), which in turn increases transcription of genes encoding proteins such as COX2 (cyclo-oxygenase 2, a key enzyme in prostaglandin biosynthesis), nitric oxide synthase and cytokines such as TNF (tumour necrosis factor). Recently, a role for metabolic pathways in the regulation of LPS signalling has become a focus of research in inflammation. A notable example is LPS promoting the so-called Warburg effect – aerobic glycolysis. This allows for an up-regulation in ATP production, and also for the production of biosynthetic intermediates to meet the demands of the activated macrophages. In this issue of the Biochemical Journal, Infantino et al. add a new finding to the role of metabolism in LPS action. They demonstrate a requirement for the mitochondrial citrate carrier in the induction of ROS, nitric oxide and prostaglandins by LPS. The knockdown of the carrier with siRNA (small interfering RNA), or the use of an inhibitor BTA (benzene-1,2,3-tricarboxylate), abolishes these responses. Although no mechanism is provided, the authors speculate that acetyl-CoA is synthesized from citrate in the cytosol. The acetyl-CoA generated could be required for phospholipid biosynthesis, the phospholipids being the source of arachidonic acid for prostaglandin production. Another product of citrate metabolism, oxaloacetate, will indirectly generate nitric oxide and ROS. This finding places citrate, transported from the mitochondria, as a key player in LPS signalling, at least for ROS, nitric oxide and prostaglandin production. This somewhat unexpected role for citrate in LPS action adds to a growing literature on the role for metabolism in the regulation of signalling in inflammation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3