miR-6315 silencing protects against spinal cord injury through the Smo and anti-ferroptosis pathway

Author:

Ma Zheng1,Fan Yan1,Peng Yufang1,Bian Ligong1,Zhou Jianping2,Wang Lijuan1,Xia Yan3,Zheng Sili1,Ji Yanlian1,Han Yanbing4,Feng Chengan1,Ba Yingchun1ORCID

Affiliation:

1. 1Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China

2. 2Department of Orthopaedics, Chenggong branch of Kunming Yan’an hospital, Kunming 650500, Yunnan, China

3. 3Department of Anatomy, Haiyuan College, Kunming Medical University, Kunming 650106, Yunnan, China

4. 4Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China

Abstract

Abstract Spinal cord injury (SCI) causes permanent damage and has a high disability rate. Currently, no efficient therapeutic strategy is available for SCI. The present study investigated the mechanisms of microRNAs (miRNAs) in rats with spinal cord injury. Whole transcriptome sequencing (WTS) was used for analyzing miRNA and messenger RNA (mRNA) expression patterns in rat spinal cord tissue at different time points after SCI. Gene Ontology (GO) and KEGG pathways were analyzed to obtain crucial functional pathways. miR-6315 was the most significantly up-regulated and differentially expressed miRNA after 24 h of SCI; the expression of miR-6315 gradually decreased after 3 and 7 days of SCI. Bioinformatics analysis was conducted to predict the targeting relation of miR-6315 with Smo, and qRT-PCR and dual-luciferase reporter assays were conducted for verification. The miR-6315 silencing (miR-6315-si) adenovirus was successfully constructed. miR-6315 knockdown treatment significantly promoted functional behavioral recovery in rats post-SCI through using Basso–Beattie–Bresnahan (BBB) locomotor rating scale and the inclined plane test. The neuronal axon regeneration and neuronal migration were promoted, and cell apoptosis was attenuated in treated SCI rats and Glu-treated neurons after miR-6315 knockdown using immunofluorescence and scratch assays. We discovered that Smo and anti-ferroptosis pathway factors, xCT, GSH, and GPX4, may be involved in miR-6315-regulated SCI repair. The expression of miR-6315 was negatively correlated with Smo, xCT, GSH, and GPX4. In conclusion, miR-6315 may be a potential target in the treatment of SCI.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3