p110δ PI3K as a therapeutic target of solid tumours

Author:

Xenou Lydia1,Papakonstanti Evangelia A.1ORCID

Affiliation:

1. Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece

Abstract

Abstract From the time of first characterization of PI3K as a heterodimer made up of a p110 catalytic subunit and a regulatory subunit, a wealth of evidence have placed the class IA PI3Ks at the forefront of drug development for the treatment of various diseases including cancer. The p110α isoform was quickly brought at the centre of attention in the field of cancer research by the discovery of cancer-specific gain-of-function mutations in PIK3CA gene in a range of human solid tumours. In contrast, p110δ PI3K was placed into the spotlight of immunity, inflammation and haematologic malignancies because of the preferential expression of this isoform in leucocytes and the rare mutations in PIK3CD gene. The last decade, however, several studies have provided evidence showing that the correlation between the PIK3CA mutations and the response to PI3K inhibition is less clear than originally considered, whereas concurrently an unexpected role of p110δ PI3K in solid tumours has being emerging. While PIK3CD is mostly non-mutated in cancer, the expression levels of p110δ protein seem to act as an intrinsic cancer-causing driver in various solid tumours including breast, prostate, colorectal and liver cancer, Merkel-Cell carcinoma, glioblastoma and neurobalstoma. Furthermore, p110δ selective inhibitors are being studied as potential single agent treatments or as combination partners in attempt to improve cancer immunotherapy, with both strategies to shown great promise for the treatment of several solid tumours. In this review, we discuss the evidence implicating the p110δ PI3K in human solid tumours, their impact on the current state of the field and the potential of using p110δ-selective inhibitors as monotherapy or combined therapy in different cancer contexts.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3