The emerging complexity of protein ubiquitination

Author:

Komander David1

Affiliation:

1. MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, U.K.

Abstract

Protein ubiquitination and protein phosphorylation are two fundamental regulatory post-translational modifications controlling intracellular signalling events. However, the ubiquitin system is vastly more complex compared with phosphorylation. This is due to the ability of ubiquitin to form polymers, i.e. ubiquitin chains, of at least eight different linkages. The linkage type of the ubiquitin chain determines whether a modified protein is degraded by the proteasome or serves to attract proteins to initiate signalling cascades or be internalized. The present review focuses on the emerging complexity of the ubiquitin system. I review what is known about individual chain types, and highlight recent advances that explain how the ubiquitin system achieves its intrinsic specificity. There is much to be learnt from the better-studied phosphorylation system, and many key regulatory mechanisms underlying control by protein phosphorylation may be similarly employed within the ubiquitin system. For example, ubiquitination may have important allosteric roles in protein regulation that are currently not appreciated.

Publisher

Portland Press Ltd.

Subject

Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3