Affiliation:
1. Department of Radiotherapy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
2. Department of Ultrasound, Shandong Province Coal Taishan Sanatorium, Tai’an, Shandong 271000, China
Abstract
Abstract
LncRNA LINC00657 has oncogenic or anti-carcinoma roles in different cancers, and yet its detailed molecular mechanism in esophageal cancer (EC) remains unclear. In addition, competitive endogenous RNA (ceRNA) regulatory lncRNA–miRNA–mRNA networks are critical for tumorigenesis and progression. Hence, the present study explored the roles of LINC00657 in EC and identified its relevant ceRNA network. We first detected the expression of LINC00657 in EC. Then, we applied starBase and TargetScan websites to find miR-26a-5p binding to LINC00657 and obtain CKS2 as a target of miR-26a-5p. The roles of LINC00657, miR-26a-5p or CKS2 in the proliferation, migration, invasion, and apoptosis of EC cells were respectively assessed by CCK-8, wound healing assay, transwell invasion assay, and flow cytometry. The changes of the MDM2/p53/Bcl2/Bax pathway were measured via Western blot. The results revealed that LINC00657 showed an aberrant high expression in EC cells, which promoted the growth of EC cells. Additionally, LINC00657 functioned as a sponge of miR-26a-5p, and LINC00657 negatively mediated miR-26a-5p to regulate the growth of EC cells. Furthermore, CKS2 was observed as a direct target of miR-26a-5p, and CKS2 controlled the growth of EC cells via the MDM2/p53/Bcl2/Bax pathway. Moreover, there was a positive correlation between LINC00657 and CKS2. LINC00657 knockdown inhibited CKS2 expression to suppress the proliferation, migration, and invasion of EC cells and induced apoptosis via regulating the MDM2/p53/Bcl2/Bax pathway. Collectively, LINC00657/miR-26a-5p/CKS2 ceRNA network could promote the progression of EC, which is good for understanding the molecular mechanism of EC and offers novel biomarkers for EC diagnosis and therapy.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献