Attempting to rewrite History: challenges with the analysis of histidine-phosphorylated peptides

Author:

Gonzalez-Sanchez Maria-Belen1,Lanucara Francesco12,Helm Matthew3,Eyers Claire E.12

Affiliation:

1. Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.

2. Protein Function Group, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.

3. School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmills Road, Belfast BT9 5AG, Northern Ireland, U.K.

Abstract

A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MS-based strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidine-containing peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3