The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation

Author:

Bagshaw Clive R.1,Eccleston John F.1,Eckstein Fritz1,Goody Roger S.1,Gutfreund Herbert1,Trentham David R.1

Affiliation:

1. Molecular Enzymology Laboratory, Department of Biochemistry, University of Bristol Medical School, Bristol BS8 1TD, U.K.

Abstract

The kinetics of protein-fluorescence change when rabbit skeletal myosin subfragment 1 is mixed with ATP or adenosine 5′-(3-thiotriphosphate) in the presence of Mg2+ are incompatible with a simple bimolecular association process. A substrate-induced conformation change with ΔG0<-24kJ·mol-1 (i.e. ΔG0 could be more negative) at pH8 and 21°C is proposed as the additional step in the binding of ATP. The postulated binding mechanism is M+ATP⇌M·ATP⇌M*·ATP, where the association constant for the first step, K1, is 4.5×103m-1 at I 0.14m and the rate of isomerization is 400s-1. In the presence of Mg2+, ADP binds in a similar fashion to ATP, the rate of the conformation change also being 400s-1, but with ΔG0 for that process being -14kJ·mol-1. The effect of increasing ionic strength is to decrease K1, the kinetics of the conformation change being essentially unaltered. Alternative schemes involving a two-step binding process for ATP to subfragment 1 are possible. These are not excluded by the experimental results, although they are perhaps less likely because they imply uncharacteristically slow bimolecular association rate constants.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 297 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3