Identification of an autophagy-related gene signature predicting overall survival for hepatocellular carcinoma

Author:

Xu Wenfang12,Guo Wenke2,Lu Ping2,Ma Duan1,Liu Lei1ORCID,Yu Fudong2

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China

2. NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China

Abstract

Abstract The poor prognosis of hepatocellular carcinoma (HCC) calls for the development of accurate prognostic models. The growing number of studies indicating a correlation between autophagy activity and HCC indicates there is a commitment to finding solutions for the prognosis of HCC from the perspective of autophagy. We used a cohort in The Cancer Genome Atlas (TCGA) to evaluate the expression of autophagy-related genes in 371 HCC samples using univariate Cox and lasso Cox regression analysis, and the prognostic features were identified. A prognostic model was established by combining the expression of selected genes with the multivariate Cox regression coefficient of each gene. Eight autophagy-related genes were selected as prognostic features of HCC. We established the HCC prognostic risk model in TCGA dataset using these identified prognostic genes. The model’s stability was confirmed in two independent verification sets (GSE14520 and GSE36376). The model had a good predictive power for the overall survival (OS) of HCC (hazard ratio = 2.32, 95% confidence interval = 1.76–3.05, P<0.001). Moreover, the risk score computed by the model did not depend on other clinical parameters. Finally, the applicability of the model was demonstrated through a nomogram (C-index = 0.701). In the present study, we established an autophagy-related risk model having a high prediction accuracy for OS in HCC. Our findings will contribute to the definition of prognosis and establishment of personalized therapy for HCC patients.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3