Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface

Author:

Adachi T1,Fukushima T1,Usami Y1,Hirano K1

Affiliation:

1. Department of Pharmaceutics, Gifu Pharmaceutical University, Gifu 502, Japan

Abstract

Much evidence has suggested that the superoxide generated by xanthine oxidase (XOD) within the endothelial cell triggers characteristic free-radical-mediated tissue injuries. Although it has been reported that XOD exists not only in the cytoplasm, but also on the outside surface of the endothelial cell membrane, it is not clear how XOD localizes on the outside of the plasma membrane. Purified human xanthine oxidase (h-XOD) had an affinity for heparin-Sepharose. The binding was largely independent of the pH over the physiological range, whereas it tended to increase at lower pH and to decrease at higher pH. Exposure of h-XOD to the lysine-specific reagent trinitrobenzenesulphonic acid or the arginine-specific reagent phenylglyoxal caused it to lose its affinity for heparin-Sepharose. The binding of h-XOD to heparin is apparently of electrostatic nature, and both lysine and arginine residues are involved in the binding. h-XOD was found to bind to cultured porcine aortic endothelial cells, and this binding was inhibited by the addition of heparin or pretreatment of the cells with heparinase and/or heparitinase. Intravenous injection of heparin into two healthy persons led to a prompt increase in plasma h-XOD concentration. These results suggest that XOD localizes on the outside surface of endothelial cells by association with polysaccharide chains of heparin-like proteoglycans on the endothelial-cell membranes. Superoxide extracellularly generated by XOD may injure the source-endothelial-cell membrane and also attract and activate closely appositional neutrophils, which themselves actually cause progressive oxidative damage.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3