Nematode pyruvate dehydrogenase kinases: role of the C-terminus in binding to the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex

Author:

CHEN Wei1,KOMUNIECKI Patricia R.1,KOMUNIECKI Richard1

Affiliation:

1. Department of Biology, The University of Toledo, Toledo, OH 43606-3390, U.S.A.

Abstract

Pyruvate dehydrogenase kinases (PDKs) from the anaerobic parasitic nematode Ascaris suum and the free-living nematode Caenorhabditis elegans were functionally expressed with hexahistidine tags at their N-termini and purified to apparent homogeneity. Both recombinant PDKs (rPDKs) were dimers, were not autophosphorylated and exhibited similar specific activities with the A. suum pyruvate dehydrogenase (E1) as substrate. In addition, the activities of both PDKs were activated by incubation with PDK-depleted A. suum muscle pyruvate dehydrogenase complex (PDC) and were stimulated by NADH and acetyl-CoA. However, the recombinant A. suum PDK (rAPDK) required higher NADH/NAD+ ratios for half-maximal stimulation than the recombinant C. elegans PDK (rCPDK) or values reported for mammalian PDKs, as might be predicted by the more reduced microaerobic mitochondrial environment of the APDK. Limited tryptic digestion of both rPDKs yielded stable fragments truncated at the C-termini (trPDKs). The trPDKs retained their dimeric structure and exhibited substantial PDK activity with the A. suum E1 as substrate, but PDK activity was not activated by incubation with PDK-depleted A. suum PDC or stimulated by elevated NADH/NAD+ or acetyl-CoA/CoA ratios. Direct-binding assays demonstrated that increasing amounts of rCPDK bound to the A. suum PDK-depleted PDC. No additional rCPDK binding was observed at ratios greater than 20 mol of rCPDK/mol of PDC. In contrast, the truncated rCPDK (trCPDK) did not exhibit significant binding to the PDC. Similarly, a truncated form of rCPDK, rCPDK1–334, generated by mutagenesis, exhibited properties similar to those observed for trCPDK. These results suggest that the C-terminus of the PDK is not required for subunit association of the homodimer or catalysis, but instead seems to be involved in the binding of the PDKs to the dihydrolipoyl transacetylase core of the complex.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3