Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy

Author:

Davies M J1,Slater T F1

Affiliation:

1. Department of Biochemistry, Brunel University, Uxbridge, Middx. U.K.

Abstract

The breakdown of cumene hydroperoxide and peroxidized fatty acids by iron is shown, by use of the spin trap 5,5-dimethyl-l-pyrroline-N-oxide, to be sensitive to (a) the oxidation state of the metal and (b) the nature of the chelating ligands. The initial step in the Fe2+-catalysed breakdown is the production of an alkoxyl radical by one-electron reduction, and this type of radical has been successfully trapped from each substrate. Subsequent reactions of this alkoxyl species produce both carbon-centred and peroxyl radicals, depending on the concentrations of the reagents present. The use of the same spin trap in microsomal systems undergoing either NADPH-supported or Fe2+-induced peroxidation led to the detection of low concentrations of radical adducts, among which are signals that are believed to be due to lipid alkoxyl radicals. Reaction of polyunsaturated fatty acid hydroperoxides with both Fe2+ and lipoxygenase under anaerobic conditions gives rise to signals not only from the alkoxy-radical adduct, but also from a further species which is tentatively identified as being due to an acyl [RC(O).]-radical adduct; chemical studies lend support to this assignment.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People;Antioxidants & Redox Signaling;2023-04-01

2. Spin-Trapping Theory and Applications;Encyclopedia of Biophysics;2021

3. Lipid oxidation in food;Lipids and Edible Oils;2020

4. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction?;Free Radical Biology and Medicine;2019-03

5. Chapter 8 Antioxidant-prooxidant balance in the gut;Selenium in poultry nutrition and health;2018-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3