Identifying knots in proteins

Author:

Millett Kenneth C.1,Rawdon Eric J.2,Stasiak Andrzej3,Sułkowska Joanna I.45

Affiliation:

1. Department of Mathematics, University of California Santa Barbara, 552 University Road, Santa Barbara, CA 93106, U.S.A.

2. Department of Mathematics, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, U.S.A.

3. Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne-Dorigny, Switzerland

4. Center for Theoretical Biological Physics, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92037, U.S.A.

5. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Abstract

Polypeptide chains form open knots in many proteins. How these knotted proteins fold and finding the evolutionary advantage provided by these knots are among some of the key questions currently being studied in the protein folding field. The detection and identification of protein knots are substantial challenges. Different methods and many variations of them have been employed, but they can give different results for the same protein. In the present article, we review the various knot identification algorithms and compare their relative strengths when applied to the study of knots in proteins. We show that the statistical approach based on the uniform closure method is advantageous in comparison with other methods used to characterize protein knots.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference33 articles.

1. Knotting problems in biology;Delbrück;Proc. Symp. Appl. Math.,1962

2. Chemical topology;Frisch;J. Am. Chem. Soc.,1961

3. Statistical mechanics with topological constraints: I;Edwards;Proc. Phys. Soc.,1967

4. Statistical mechanics with topological constraints: II;Edwards;J. Phys. A: Gen. Phys.,1968

5. Concept de reptation pour une chaine polymerique;de Gennes;J. Chem. Phys.,1971

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Everything AlphaFold tells us about protein knots;Journal of Molecular Biology;2024-10

2. Theta‐curves in proteins;Protein Science;2024-08-21

3. Knotted artifacts in predicted 3D RNA structures;PLOS Computational Biology;2024-06-20

4. Revisiting the second Vassiliev (In)variant for polymer knots;Journal of Physics A: Mathematical and Theoretical;2024-05-31

5. Knots and θ-Curves Identification in Polymeric Chains and Native Proteins Using Neural Networks;Macromolecules;2024-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3