JMJD6 induces HOTAIR, an oncogenic lincRNA, by physically interacting with its proximal promoter

Author:

Biswas Antara1,Shettar Abhijith2,Mukherjee Geetashree3,Kondaiah Paturu2,Desai Kartiki V.1ORCID

Affiliation:

1. National Institute of Biomedical Genomics, Kalyani 741251, India

2. Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India

3. Tata Medical Center, 14 Main Arterial Road (EW), New Town, Rajarhat, Kolkata 700156, India

Abstract

Using microarray analysis, we found that HOX transcript antisense intergenic RNA (HOTAIR) is up-regulated by Jumonji domain containing-6 (JMJD6), a bifunctional lysyl hydroxylase and arginine demethylase. In breast cancer, both JMJD6 and HOTAIR RNAs increase tumor growth and associate with poor prognosis but no molecular relationship between them is known. We show that overexpression of JMJD6 increased HOTAIR expression and JMJD6 siRNAs suppressed it in ER+ MCF-7, triple negative MDA-MB-231 and non-breast cancer HEK 293 cells. Therefore, JMJD6 regulates HOTAIR independent of ER status. Using various deletion constructs spanning (−1874 to +50) of the HOTAIR promoter, we identified pHP216 (−216 to +50 bp) as the smallest construct that retained maximal JMJD6 responsiveness. In ChIP assays, JMJD6 bound this region suggesting that JMJD6 may be directly recruited to the HOTAIR promoter. Mutant JMJD6H187A that is devoid of enzymatic activity could bind this site but failed to induce transcription. ChIP and electromobility shift assays identified a JMJD6 interaction region from (−123 to −103 bp) within the HOTAIR promoter. In tumor samples but not normal breast tissue, the expression of JMJD6 linearly correlated with HOTAIR suggesting that JMJD6-mediated up-regulation may occur specifically in tumors. Further, concurrent high expression of both genes correlated with poor survival when individual expression of either gene showed no significant association in TCGA datasets. We propose that high JMJD6 expression may achieve higher levels of HOTAIR in breast tumors. Further, since high levels of HOTAIR promote metastasis and death, blocking JMJD6 may be useful in preventing such events.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3