Hydrogen sulfide attenuates the development of diabetic cardiomyopathy

Author:

Zhou Xiang12,An Guoyin2,Lu Xiang1

Affiliation:

1. Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China

2. Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China

Abstract

There is growing evidence that H2S has beneficial effects in treatment of various cardiovascular diseases. However, it remains unclear whether H2S can attenuate the development of diabetic cardiomyopathy (DCM). The present study was designed to investigate the protective effects of H2S against DCM. Diabetic rats were induced by intraperitoneal injection of streptozotocin and administered with the H2S donor sodium hydrosulfide (NaHS) for 16 weeks. Neonatal rat cardiomyocytes (NRCMs) transfected with nuclear factor erythroid 2-related factor 2 (Nrf2)-specific siRNA or pre-treated with SP600125, SB203580 or LY294002 prior to high glucose exposure were used to confirm the involvement of Nrf2/antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/Akt signalling pathways in the protective effects of H2S. The echocardiographical and histopathological data indicated that H2S improved left ventricular function and prevented cardiac hypertrophy and myocardial fibrosis in diabetic rats. H2S was also found to attenuate hyperglycaemia-induced inflammation, oxidative stress and apoptosis in the cardiac tissue. In addition, H2S could activate the Nrf2/ARE signalling pathway and up-regulate the expression of antioxidant proteins haem oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the diabetic myocardium. Moreover, H2S was found to reduce high glucose-induced apoptosis both in vitro and in vivo by inhibiting c-Jun N-terminal kinase (JNK) and p38 MAPK pathways and activating PI3K/Akt signalling. In conclusion, our study demonstrates that H2S alleviates the development of DCM via attenuation of inflammation, oxidative stress and apoptosis.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3