Gas plasmas technology: from biomolecule redox research to medical therapy

Author:

Bekeschus Sander12ORCID

Affiliation:

1. 1ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany

2. 2Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany

Abstract

Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3