Evolutionary perspective on mammalian inorganic polyphosphate (polyP) biology

Author:

Borghi Filipy1,Saiardi Adolfo1ORCID

Affiliation:

1. Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, U.K.

Abstract

Inorganic polyphosphate (polyP), the polymeric form of phosphate, is attracting ever-growing attention due to the many functions it appears to perform within mammalian cells. This essay does not aim to systematically review the copious mammalian polyP literature. Instead, we examined polyP synthesis and functions in various microorganisms and used an evolutionary perspective to theorise key issues of this field and propose solutions. By highlighting the presence of VTC4 in distinct species of very divergent eucaryote clades (Opisthokonta, Viridiplantae, Discoba, and the SAR), we propose that whilst polyP synthesising machinery was present in the ancestral eukaryote, most lineages subsequently lost it during evolution. The analysis of the bacteria-acquired amoeba PPK1 and its unique polyP physiology suggests that eukaryote cells must have developed mechanisms to limit cytosolic polyP accumulation. We reviewed the literature on polyP in the mitochondria from the perspective of its endosymbiotic origin from bacteria, highlighting how mitochondria could possess a polyP physiology reminiscent of their ‘bacterial’ beginning that is not yet investigated. Finally, we emphasised the similarities that the anionic polyP shares with the better-understood negatively charged polymers DNA and RNA, postulating that the nucleus offers an ideal environment where polyP physiology might thrive.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference85 articles.

1. Polyphosphate: popping up from oblivion;Curr. Genet.,2017

2. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold;J. Biol. Chem.,2019

3. The emerging landscape of eukaryotic polyphosphatases;FEBS Lett.,2023

4. Inorganic polyphosphate: toward making a forgotten polymer unforgettable;J. Bacteriol.,1995

5. The development of A. N. Belozersky's ideas in polyphosphate biochemistry;Biochemistry (Mosc),2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3