MiRNA-575 suppresses angiogenesis by targeting Rab5-MEK-ERK pathway in endothelial cells

Author:

Zhao Xin1,Yi Yaping1,Meng Chao1,Fang Ningyuan1

Affiliation:

1. Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China

Abstract

Abstract Hypertension is a major risk factor for the development of atherosclerosis. Increased carotid intima-media thickness (CIMT) is generally considered as an early marker of atherosclerosis. Recently, circulating miRNAs have been implicated both as sensitive biomarkers and key regulators in the development of atherosclerosis. However, the biological functions and molecular regulatory mechanisms for miR-575 on angiogenesis remain unknown. In our study, we first identified up-regulation of circulating miR-575 in plasma of essential hypertensive patients with increased CIMT (iCIMT) compared with those patients with normal CIMT (nCIMT). Furthermore, the overexpression of miR-575 in human umbilical vein endothelial cells (HUVECs) by its mimics significantly inhibited migration and proliferation as well as induction of apoptosis of HUVECs. Inhibition of miR-575 performed the reverse effects of HUVECs. We further suggested Rab5B was the downstream target of miR-575 and knockdown of Rab5B significantly inhibited migration and proliferation of HUVECs. Overexpression of Rab5B largely rescued the miR-575-mediated impairment of angiogenesis processes including: cell proliferation, migration, and apoptosis as well as activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK-ERK) signaling. Therefore, our results uncover a novel role of miR-575 in endothelial cells, implying a potential biomarker and clinical target for atherosclerosis in hypertensive patients.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3