MiR-203a-3p regulates TGF-β1-induced epithelial–mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1

Author:

Fan Qi1ORCID,Jian Yu1

Affiliation:

1. Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China

Abstract

Abstract Asthma is a common chronic airway disease with increasing prevalence. MicroRNAs act as vital regulators in cell progressions and have been identified to play crucial roles in asthma. The objective of the present study is to clarify the molecular mechanism of miR-203a-3p in the development of asthma. The expression of miR-203a-3p and Sine oculis homeobox homolog 1 (SIX1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SIX1, fibronectin, E-cadherin, vimentin, phosphorylated-drosophila mothers against decapentaplegic 3 (p-Smad3) and Smad3 were measured by Western blot. The interaction between miR-203a-3p and SIX1 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-203a-3p was down-regulated and SIX1 was up-regulated in asthma serums, respectively. Transforming growth factor-β1 (TGF-β1) treatment induced the reduction of miR-203a-3p and the enhancement of SIX1 in BEAS-2B and 16HBE cells in a time-dependent manner. Subsequently, functional experiments showed the promotion of epithelial–mesenchymal transition (EMT) induced by TGF-β1 treatment could be reversed by miR-203a-3p re-expression or SIX1 deletion in BEAS-2B and 16HBE cells. SIX1 was identified as a target of miR-203a-3p and negatively regulated by miR-203a-3p. Then rescue assay indicated that overexpressed miR-203a-3p ameliorated TGF-β1 induced EMT by regulating SIX1 in BEAS-2B and 16HBE cells. Moreover, miR-203a-3p/SIX1 axis regulated TGF-β1 mediated EMT process in bronchial epithelial cells through phosphorylating Smad3. These results demonstrated that MiR-203a-3p modulated TGF-β1-induced EMT in asthma by regulating Smad3 pathway through targeting SIX1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3