C3 binds covalently to the Cγ3 domain of IgG immune aggregates during complement activation by the alternative pathway

Author:

Antón L C1,Alcolea J M1,Sánchez-Corral P1,Marqués G1,Sánchez A1,Vivanco F1

Affiliation:

1. Department of Immunology, Fundación Jiménez Díaz, Av. Reyes Católicos, 2, 28040-Madrid, Spain.

Abstract

Ovalbumin-antiovalbumin IgG immune aggregates were incubated with normal human serum in the presence of iodo[1-14C]acetamide, in conditions in which only the alternative pathway of complement was activated. The [14C]C3b-IgG covalent complexes formed were digested with pepsin, and analysed by SDS/polyacrylamide-gel electrophoresis and fluorography. Covalent complexes of [14C]C3-Fd and [14C]C3-pFc' were visualized, demonstrating that, during complement activation by the alternative pathway, C3 is covalently incorporated into the C gamma 3 domain of IgG, as well as into the Fd region. The C gamma 2 domain becomes protected from pepsin action by the bound C3b. All the covalent linkages between C3 and the IgG were sensitive to hydroxylamine. When [14C]C3-pFc' covalent complexes were treated with 1 M-NH2OH and loaded onto a Bio-Gel P-4 column, a radioactive peak of 3 kDa was obtained. The material released from [14C]C3-pFc' and [14C]C3-F(ab')2 complexes after treatment with 1 M-NH2OH was mixed and analysed in the Bio-Gel P-4 column. A similar radioactive peak of 3 kDa was obtained. When this peak, either from [14C]C3-pFc' alone or from the mixture of [14C]C3-F(ab')2 and [14C]C3-pFc', was fractionated by h.p.l.c., virtually the same radioactive peptide profile was obtained, indicating that very similar C3 peptides remained covalently bound to both regions (Fab and C gamma 3) of the antibody molecule. It is suggested that C3 bound to the C gamma 3 domain of IgG may interfere with the Fc-Fc interactions of immune aggregates and thus may be involved in several biological properties displayed by these complement-activating aggregates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3