Binding of Testosterone and Oestradiol to Sex Hormone Binding Globulin, Human Serum Albumin and other Plasma Proteins: Evidence for Non-Specific Binding of Oestradiol to Sex Hormone Binding Globulin

Author:

Iqbal M. Jawed1,Dalton Maureen2,Sawers Robert S.3

Affiliation:

1. Department of Biochemical Endocrinology, Chelsea Hospital for Women, London

2. Department of Endocrinology, The Royal Free Hospital, London

3. Department of Obstetrics and Gynaecology, Jessop Hospital for Women, Sheffield, U.K.

Abstract

1. The percentage binding of testosterone (T) and oestradiol (E2) to sex hormone binding globulin (SHBG) and human serum albumin (HSA) was determined over a range of SHBG concentrations of 16–250 nmol of dihydrotestosterone (DHT) bound/l. It was found that the binding of both T and E2 to HSA was a function of their binding to SHBG and bore an inverse relationship to it. After removal of both SHBG and HSA from plasma by affinity chromatography a ‘residual’ binding of about 11% for T and 12% for E2 was still apparent. in addition to the specific high-affinity, low capacity binding of E2 to SHBG, non-specific low-affinity binding of 7–12% was demonstrated after selective denaturation of the specific binding site of the latter. 2. Competition studies indicated that although at the relatively higher levels of SHBG found in the normal female the physiological concentrations of E2, T and DHT need not be taken into account in estimating the unbound fractions of steroids, at the relatively lower levels of SHBG found in normal men and hirsute women, the physiological concentrations of T and DHT are effective in causing statistically significant displacement of E2 from the common, specific binding site on SHBG. 3. A simple computerized technique is described for the determination of fractions of E2 and T respectively, that are unbound to SHBG, unbound to SHBG and HSA, and unbound to all plasma proteins, when the total plasma levels of E2, T, DHT and SHBG are known.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3