The substrate-specificity of human lysosomal α-d-mannosidase in relation to genetic α-mannosidosis

Author:

al Daher S1,de Gasperi R2,Daniel P3,Hall N1,Warren C D2,Winchester B1

Affiliation:

1. Department of Clinical Biochemistry, Institute of Child Health, University of London, London WC1N 1EH, U.K.

2. tCarbohydrate Unit, Lovett Laboratories, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA 02129, U.S.A.

3. Eunice Kennedy Shriver Centre for Mental Retardation, Waltham, MA 02254, U.S.A.

Abstract

The specificity of human liver lysosomal alpha-mannosidase (EC 3.2.1.24) towards a series of oligosaccharide substrates derived from high-mannose, complex and hybrid asparagine-linked glycans and from the storage products in alpha-mannosidosis was investigated. The enzyme hydrolyses all alpha(1-2)-, alpha(1-3)- and alpha(1-6)-mannosidic linkages in these glycans without a requirement for added Zn2+, albeit at different rates. A major finding of this study is that all the substrates are hydrolysed by non-random pathways. These pathways were established by determining the structures of intermediates in the digestion mixtures by a combination of h.p.t.l.c. and h.p.l.c. before and after acetolysis. The catabolic pathway for a particular substrate appears to be determined by its structure, raising the possibility that degradation occurs by an uninterrupted sequence of steps within one active site. The structures of the digestion intermediates are compared with the published structures of the storage products in mannosidosis and of intact asparagine-linked glycans. Most but not all of the digestion intermediates derived from high-mannose glycans have structures found in intact asparagine-linked glycans of human glycoproteins or among the storage products in the urine of patients with mannosidosis. However, the relative abundances of these structures suggests that the catabolic pathway is not the same as the processing pathway. In contrast, the intermediates formed from the digestion of oligosaccharides derived from hybrid and complex N-glycans are completely different from any processing intermediates and also from the oligosaccharides of composition Man2-4GlcNAc that account for 80-90% of the storage products in alpha-mannosidosis. It is postulated that the structures of these major storage products arise from the action of an exo/endo-alpha(1-6)-mannosidase on the partially catabolized oligomannosides that accumulate in the absence of the main lysosomal alpha-mannosidase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3