Structural differences and the presence of unsubstituted amino groups in heparan sulphates from different tissues and species

Author:

TOIDA Toshihiko1,YOSHIDA Hisao1,TOYODA Hidenao1,KOSHIISHI Ichiro1,IMANARI Toshio1,HILEMAN Ronald E.2,FROMM Jonathan R.2,LINHARDT Robert J.23

Affiliation:

1. Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan

2. Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, U.S.A.

3. Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, U.S.A.

Abstract

This study presents a comparison of heparan sulphate chains isolated from various porcine and bovine tissues. 1H-NMR spectroscopy (500 MHz) was applied for structural and compositional studies on intact heparan sulphate chains. After enzymic digestion of heparan sulphate using heparin lyase I (EC 4.2.2.7) II and III (EC 4.2.2.8), the compositions of unsaturated disaccharides obtained were determined by analytical capillary electrophoresis. Correlations between the N-sulphated glucosamine residues and O-sulphation and between iduronic acid content and total sulphation were discovered using the data obtained by NMR and disaccharide analysis. Heparan sulphate chains could be classified into two groups based on the sulphation degree and the iduronic acid content. Heparan sulphate chains with a high degree of sulphation possessed also a significant number of iduronic acid residues and were isolated exclusively from porcine brain, liver and kidney medulla. The presence and amount of N-unsubstituted glucosamine residues (GlcNp) was established in all of the heparan sulphates examined. The structural context in which this residue occurs was demonstrated to be: high sulphation domain → 4)-β-d-GlcAp-(1 → 4)-α-d-GlcNp-(1 → 4)-β-d-GlcAp-(1 → low sulphation domain (where GlcNp is 2-amino-2-deoxyglucopyranose, and GlcAp is glucopyranosyluronic acid), based on the isolation and characterization of a novel, heparin lyase III-derived, GlcNp containing tetrasaccharide and hexasaccharide. The results presented suggest that structural differences may play a role in important biological events controlled by heparan sulphate in different tissues.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3