AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors

Author:

Zhang T.1,Kruys V.1,Huez G.1,Gueydan C.1

Affiliation:

1. Laboratory of Biological Chemistry, Institute of Molecular Biology and Medicine, Free University of Brussels, 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium

Abstract

Tumour necrosis factor (TNF)-α mRNA contains an AU-rich element (ARE) in its 3′ untranslated region (3′UTR), which determines its half-life and translational efficiency. In unstimulated macrophages, TNF-α mRNA is repressed translationally, and becomes efficiently translated upon cell activation. Gel retardation experiments and screening of a macrophage cDNA expression library with the TNF-α ARE allowed the identification of TIA-1-related protein (TIAR), T-cell intracellular antigen-1 (TIA-1) and tristetraprolin (TTP) as TNF-α ARE-binding proteins. Whereas TIAR and TIA-1 bind the TNF-α ARE independently of the activation state of macrophages, the TTP-ARE complex is detectable upon stimulation with lipopolysaccharide (LPS). Moreover, treatment of LPS-induced macrophage extracts with phosphatase significantly abrogates TTP binding to the TNF-α ARE, indicating that TTP phosphorylation is required for ARE binding. Carballo, Lai and Blackshear [(1998) Science 281, 1001–1005] showed that TTP was a TNF-α mRNA destabilizer. In contrast, TIA-1, and most probably TIAR, acts as a TNF-α mRNA translational silencer. A two-hybrid screening with TIAR and TIA-1 revealed the capacity of these proteins to interact with other RNA-binding proteins. Interestingly, TIAR and TIA-1 are not engaged in the same interaction, indicating for the first time that TIAR and TIA-1 can be functionally distinct. These findings also suggest that ARE-binding proteins interact with RNA as multimeric complexes, which might define their function and their sequence specificity.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3