Human carbon catabolite repressor protein (CCR4)-associative factor 1: cloning, expression and characterization of its interaction with the B-cell translocation protein BTG1

Author:

BOGDAN John A.1,ADAMS-BURTON Catherine1,PEDICORD Donna L.1,SUKOVICH Drew A.1,BENFIELD Pamela A.1,CORJAY Martha H.1,STOLTENBORG Janet K.1,DICKER Ira B.1

Affiliation:

1. DuPont Pharmaceuticals Company, Experimental Station E400-3231, Wilmington, DE 19880-0400, U.S.A.

Abstract

The human BTG1 protein is thought to be a potential tumour suppressor because its overexpression inhibits NIH 3T3 cell proliferation. However, little is known about how BTG1 exerts its anti-proliferative activity. In this study, we used the yeast ‘two-hybrid ’ system to screen for interacting protein partners and identified human carbon catabolite repressor protein (CCR4)-associative factor 1 (hCAF-1), a homologue of mouse CAF-1 (mCAF-1) and Saccharomyces cerevisiae yCAF-1/POP2. In vitro the hCAF-1/BTG1 complex formation was dependent on the phosphorylation of a putative p34cdc2 kinase site on BTG1 (Ser-159). In yeast, the Ala-159 mutant did not interact with hCAF-1. In addition, phosphorylation of Ser-159 in vitro showed specificity for the cell cycle kinases p34CDK2/cyclin E and p34CDK2/cyclin A, but not for p34CDK4/cyclin D1 or p34cdc2/cyclin B. Cell synchrony experiments with primary cultures of rat aortic smooth-muscle cells (RSMCs) demonstrated that message and protein levels of rat CAF-1 (rCAF-1) were up-regulated under conditions of cell contact, as previously reported for BTG1 [Wilcox, Scott, Subramanian, Ross, Adams-Burton, Stoltenborg and Corjay (1995) Circulation 92, I34–I35]. Western blot and immunohistochemical analysis showed that rCAF-1 localizes to the nucleus of contact-inhibited RSMCs, where it was physically associated with BTG1, as determined by co-immunoprecipitation with anti-hCAF-1 antisera. Overexpression of hCAF-1 in NIH 3T3 and osteosarcoma (U-2-OS) cells was itself anti-proliferative with colony formation reduced by 67% and 90% respectively. Taken together, these results indicate that formation of the hCAF-1/BTG1 complex is driven by phosphorylation at BTG1 (Ser-159) and implicates this complex in the signalling events of cell division that lead to changes in cellular proliferation associated with cell–cell contact.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3