Affiliation:
1. Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
2. Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL, U.S.A.
Abstract
Abstract
Better understanding of epigenetic regulation of hepatocellular carcinoma (HCC) will help us to cure this most common malignant liver cancer worldwide. The underlying mechanisms of HCC tumorigenesis are genomic aberrations regulated by genetic and epigenetic modifications. Histone H3 lysine modifications regulate histone structure and modulate transcriptional factor binding with target gene promoters. Targetting genes include VASH2, fatty acids synthase, RIZ1, FBP1, MPP1/3, YAP, which affect tumorigenesis, metabolisms, angiogenesis, and metastasis. Signal pathway studies demonstrate that the HGF-MET-MLL axis, phosphatase and tensin homolog (PTEN)-PI3K-Akt axis; WNT-β-catenin signal pathway is involved in histone H3 modification. A variety of factors such as virus infection, reactive oxygen species, food-borne toxins, irradiation, or non-coding RNA cause hepatocellular DNA damage or modification. Dysfunctional DNA repair mechanisms, including those at the epigenetic level are also major causes of HCC tumorigenesis. The development of therapies based on epigenetic regulatory mechanisms has great potential to advance the care of HCC patients in the future.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献