Rho–ROCK signaling regulates tumor-microenvironment interactions

Author:

Johan Mohammad Zahied1,Samuel Michael S.12ORCID

Affiliation:

1. Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia

2. Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia

Abstract

Abstract Reciprocal biochemical and biophysical interactions between tumor cells, stromal cells and the extracellular matrix (ECM) result in a unique tumor microenvironment that determines disease outcome. The cellular component of the tumor microenvironment contributes to tumor growth by providing nutrients, assisting in the infiltration of immune cells and regulating the production and remodeling of the ECM. The ECM is a noncellular component of the tumor microenvironment and provides both physical and biochemical support to the tumor cells. Rho–ROCK signaling is a key regulator of actomyosin contractility and regulates cell shape, cytoskeletal arrangement and thereby cellular functions such as cell proliferation, differentiation, motility and adhesion. Rho–ROCK signaling has been shown to promote cancer cell growth, migration and invasion. However, it is becoming clear that this pathway also regulates key tumor-promoting properties of the cellular and noncellular components of the tumor microenvironment. There is accumulating evidence that Rho–ROCK signaling enhances ECM stiffness, modifies ECM composition, increases the motility of tumor-associated fibroblasts and lymphocytes and promotes trans-endothelial migration of tumor-associated lymphocytes. In this review, we briefly discuss the current state of knowledge on the role of Rho–ROCK signaling in regulating the tumor microenvironment and the implications of this knowledge for therapy, potentially via the development of selective inhibitors of the components of this pathway to permit the tuning of signaling flux, including one example with demonstrated utility in pre-clinical models.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3