Microbial metabolism of aromatic nitriles. Enzymology of C–N cleavage by Nocardia sp. (Rhodochrous group) N.C.I.B. 11216

Author:

Harper David B.1

Affiliation:

1. Department of Agricultural and Food Chemistry, Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, and Department of Agriculture, N. Ireland, U.K.

Abstract

1. An organism utilizing benzonitrile as sole carbon and nitrogen source was isolated by the enrichment-culture technique and identified as a Nocardia sp. of the rhodochrous group. 2. Respiration studies indicate that nitrile degradation proceeds through benzoic acid and catechol. 3. Cell-free extracts of benzonitrile-grown cells contain an enzyme that catalyses the conversion of benzonitrile directly into benzoic acid without intermediate formation of benzamide. 4. This nitrilase enzyme was purified by DEAE-cellulose chromatography and gel filtration on Sephadex G-100 in the presence and absence of substrate. The purity of the enzyme was confirmed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectric focusing on polyacrylamide gel. 5. The enzyme shows a time-dependent substrate-activation process in which the substrate catalyses the association of inactive subunits of mol.wt. 45000 to form the polymeric 12-unit active enzyme of mol.wt. 560000. The time required for complete association is highly dependent on the concentration of the enzyme, temperature and pH. 6. The associated enzyme has a pH optimum of 8.0 and Km with benzonitrile as substrate of 4mm. The activation energy of the reaction as deduced from the Arrhenius plot is 51.8kJ/mol. 7. Enzyme activity is inhibited by thiol-specific reagents and several metal ions. 8. Studies with different substrates indicate that the nitrilase is specific for nitrile groups directly attached to the benzene ring. Various substituents in the ring are compatible with activity, though ortho-substitution, except by fluorine, renders the nitrile invulnerable to attack. 9. The environmental implications of these findings and the possible significance of the enzyme in the regulation of metabolism are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3