Characterization of the inositol phosphorylceramide synthase activity from Trypanosoma cruzi

Author:

FIGUEIREDO Juliana M.1,DIAS Wagner B.1,MENDONÇA-PREVIATO Lucia1,PREVIATO José O.1,HEISE Norton1

Affiliation:

1. Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS) Bloco G, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, Rio de Janeiro-RJ, 21944-970, Brazil

Abstract

IPC (inositol phosphorylceramide) synthase is an enzyme essential for fungal viability, and it is the target of potent antifungal compounds such as rustmicin and aureobasidin A. Similar to fungi and some other lower eukaryotes, the protozoan parasite Trypanosoma cruzi is capable of synthesizing free or protein-linked glycoinositolphospholipids containing IPC. As a first step towards understanding the importance and mechanism of IPC synthesis in T. cruzi, we investigated the effects of rustmicin and aureobasidin A on the proliferation of different life-cycle stages of the parasite. The compounds did not interfere with the axenic growth of epimastigotes, but aureobasidin A decreased the release of trypomastigotes from infected murine peritoneal macrophages and the number of intracellular amastigotes in a dose-dependent manner. We have demonstrated for the first time that all forms of T. cruzi express an IPC synthase activity that is capable of transferring inositol phosphate from phosphatidylinositol to the C-1 hydroxy group of C6-NBD-cer {6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]hexanoylceramide} to form inositol phosphoryl-C6-NBD-cer, which was purified and characterized by its chromatographic behaviour on TLC and HPLC, sensitivity to phosphatidylinositol-specific phospholipase C and resistance to mild alkaline hydrolysis. Unlike the Saccharomyces cerevisiae IPC synthase, the T. cruzi enzyme is stimulated by Triton X-100 but not by bivalent cations, CHAPS or fatty-acid-free BSA, and it is not inhibited by rustmicin or aureobasidin A, or the two in combination. Further studies showed that aureobasidin A has effects on macrophages independent of the infecting T. cruzi cells. These results suggest that T. cruzi synthesizes its own IPC, but by a mechanism that is not affected by rustmicin and aureobasidin A.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference65 articles.

1. Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern cone countries;Moncayo;Mem. Inst. Oswaldo Cruz,2003

2. The life cycle of Trypanosoma cruzi revisited;Tyler;Int. J. Parasitol.,2001

3. Proteins anchored via GPI and solubilizing phospholipases in Trypanosoma cruzi;Cardoso de Almeida;Biol. Res.,1993

4. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes;McConville;Biochem. J.,1993

5. Glycoinositolphospholipid (GIPL) from Trypanosoma cruzi: structure, biosynthesis and immunology;Previato;Adv. Parasitol.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3