Multiple sources of sn-1,2-diacylglycerol in platelet-derived-growth-factor-stimulated Swiss 3T3 fibroblasts. Evidence for activation of phosphoinositidase C and phosphatidylcholine-specific phospholipase D

Author:

Plevin R1,Cook S J1,Palmer S1,Wakelam M J O1

Affiliation:

1. Molecular Pharmacology Group, Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

Abstract

Platelet-derived growth factor (PDGF) stimulated sn-1,2-diacylglycerol (DAG) mass formation in Swiss 3T3 fibroblasts with a lag time of some 30 s. The response was biphasic, with the second phase being sustained over time. PDGF also stimulated the formation of Ins(1,4,5)P3 with a similar lag time to the DAG response, suggesting that DAG is derived from PtdIns(4,5)P2 hydrolysis at this time point. PDGF-stimulated phosphatidylcholine (PtdCho) hydrolysis in Swiss 3T3 fibroblasts, as measured by the formation of water-soluble choline metabolites and phosphatidylbutanol (PtdBut) accumulation, was by a phospholipase D (PLD)-catalysed pathway which was kinetically downstream of initial PtdIns(4,5)P2 hydrolysis. Accumulation of PtdBut increased up to 15 min, suggesting that PLD activity is not rapidly densitized in response to PDGF. The kinetics of PtdCho hydrolysis closely paralleled the second phase of DAG formation, strongly suggesting that during prolonged stimulation periods PtdCho is a major source of DAG in these cells. However, since PtdIns(4,5)P2 breakdown was also prolonged, PDGF-stimulated DAG may be derived from both phospholipids. Down-regulation of protein kinase C (PKC), by pre-treatment with phorbol 12-myristate 13-acetate, abolished both [3H]choline and [3H]PtdBut formation, suggesting that PLD-catalysed PtdCho hydrolysis may be dependent on PKC activation, supporting its dependence on prior PtdIns(4,5)P2 hydrolysis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3