Possible Role of GABAergic Depolarization in Neocortical Neurons in Generating Hyperexcitatory Behaviors during Emergence from Sevoflurane Anesthesia in the Rat

Author:

Lim Byung-Gun1,Shen Feng-Yan2,Kim Young-Beom3,Kim Woong Bin3,Kim Yoon Sik3,Han Hee Chul3,Lee Mi-Kyoung1,Kong Myoung-Hoon1,Kim Yang In3

Affiliation:

1. Department of Anesthesiology and Pain Medicine, Korea University College of Medicine, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, Korea

2. Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20092, China

3. Department of Physiology and Neuroscience Research Institute, Korea University College of Medicine, 126–1 Anam-dong 5-ga, Seoul, Korea

Abstract

Hyperexcitatory behaviors occurring after sevoflurane anesthesia are of serious clinical concern, but the underlying mechanism is unknown. These behaviors may result from the potentiation by sevoflurane of GABAergic depolarization/excitation in neocortical neurons, cells implicated in the genesis of consciousness and arousal. The current study sought to provide evidence for this hypothesis with rats, the neocortical neurons of which are known to respond to GABA (γ-aminobutyric acid) with depolarization/excitation at early stages of development (i.e., until the second postnatal week) and with hyperpolarization/inhibition during adulthood. Employing behavioral tests and electrophysiological recordings in neocortical slice preparations, we found: (1) sevoflurane produced PAHBs (post-anesthetic hyperexcitatory behaviors) in postnatal day (P)1–15 rats, whereas it failed to elicit PAHBs in P16 or older rats; (2) GABAergic PSPs (postsynaptic potentials) were depolarizing/excitatory in the neocortical neurons of P5 and P10 rats, whereas mostly hyperpolarizing/inhibitory in the cells of adult rats; (3) at P14–15, <50 % of rats had PAHBs and, in general, the cells of the animals with PAHBs exhibited strongly depolarizing GABAergic PSPs, whereas those without PAHBs showed hyperpolarizing or weakly depolarizing GABAergic PSPs; (4) bumetanide [inhibitor of the Cl importer NKCC (Na+ -K+−2Cl cotransporter)] treatment at P5 suppressed PAHBs and depolarizing GABAergic responses; and (5) sevoflurane at 1 % (i.e., concentration <1 minimum alveolar concentration) potentiated depolarizing GABAergic PSPs in the neurons of P5 and P10 rats and of P14–15 animals with PAHBs, evoking action potentials in ≥50% of these cells. On the basis of these results, we conclude that sevoflurane may produce PAHBs by potentiating GABAergic depolarization/excitation in neocortical neurons.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3