Differences between collagen hydroxylases and 2-oxoglutarate dehydrogenase in their inhibition by structural analogues of 2-oxoglutarate

Author:

Majamaa K,Turpeenniemi-Hujanen T M,Latipää P,Günzler V,Hanauske-Abel H M,Hassinen I E,Kivirikko K I

Abstract

Inhibition of lysyl hydroxylase and prolyl 3-hydroxylase was studied with 23 selected aromatic and aliphatic structural analogues of 2-oxoglutarate and the results were compared with those previously reported for prolyl 4-hydroxylase. All the compounds inhibited the hydroxylases competitively with respect to 2-oxoglutarate and noncompetitively with respect to Fe2+ and the peptide substrate. The inhibition patterns for the three collagen hydroxylases were basically similar, but certain differences in detail emerged. One systematic difference was that lysyl hydroxylase had a higher Ki for almost all the compounds than had the two prolyl hydroxylases. Another interesting difference was that pyridine-2,4-dicarboxylate was the most potent inhibitor of lysyl hydroxylase and prolyl 3-hydroxylase, with Ki values of 50 microM and 3 microM respectively, whereas pyridine-2,5-dicarboxylate was the most potent inhibitor of prolyl 4-hydroxylase. These and other data suggest that the three collagen hydroxylases have similar but not identical 2-oxoglutarate-binding sites. Pyridine-2,4-dicarboxylate and pyridine-2,5-dicarboxylate and their corresponding benzene derivatives were also found to inhibit 2-oxoglutarate dehydrogenase, but with this enzyme, unlike the collagen hydroxylases, no distinct difference in the Ki values was found between the corresponding pyridine and benzene derivatives. This demonstrates the importance of the metal ion for the binding of various compounds at the 2-oxoglutarate-binding site of the collagen hydroxylases. 2-Oxoadipate was shown to replace 2-oxoglutarate in the lysyl hydroxylase and 2-oxoglutarate dehydrogenase reactions, as has previously been reported for prolyl 4-hydroxylase, whereas no other 2-oxo acid tested had any co-substrate activity. The 2-oxoglutarate-binding site of these enzymes is thus flexible to a certain degree, as it can accommodate molecules of different shapes and volumes. On the basis of the present data pyridine-2,5-dicarboxylate seems to be a quite specific inhibitor of prolyl 4-hydroxylase, the Ki for 2-oxoglutarate dehydrogenase being about 4000-fold higher.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3