Tension induces intervertebral disc degeneration via endoplasmic reticulum stress-mediated autophagy

Author:

Chen Jiangwei1,Lin Zunwen1,Deng Kui1,Shao Bin2,Yang Dong1ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, China

2. Department of Orthopedics, Jingdezhen First People’s Hospital, Jingdezhen, China

Abstract

Abstract Background: Intervertebral disc degeneration is a common degenerative disease. The present study aimed to explore the role and mechanism of tension-induced endoplasmic reticulum stress in intervertebral disc degeneration. Methods: Intervertebral disc degeneration models of SD rat were analyzed for apoptosis, the expression of Poly(ADP-ribose) polymerase (PARP), Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP using immunohistochemistry, qPCR and Western blot analysis. Annulus fibrosus cells of intervertebral disc were isolated, subjected to cyclic deformation stress and analyzed for ROS and apoptosis, lysosome activity and expression of genes. The cells were knockdown with siRNA or treated with endoplasmic reticulum stress inhibitor 4-PBA and assayed for ROS, apoptosis, lysosome activity and gene expression. Results: Compared with the controls, intervertebral disc degeneration was observed through X-rays examinations and HS staining. Apoptosis and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly increased in the intervertebral disc tissue of the models. In mechanic mimic experiments, the primary annulus fibrosus cells were subjected to 18% cyclic deformation, ROS and apoptosis as well as the activity of lysosome were increased. Similarly, the expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP was also increased significantly after deformation treatment. On other hand, when the cells were treated with 9 mM 4-PBA and/or CHOP-siRNA4, the apoptosis rate, ROS level, lysosome activity and expression of PARP, Caspase-12, Caspase-3, LC3, Beclin-1 and CHOP were significantly reduced. Conclusions: Autophagy reaction mediated by endoplasmic reticulum stress plays important rale in tension-induced intervertebral disc degeneration. Intervertebral disc degeneration likely results from interactions between autophagy, apoptosis and reticulum stress, and is ROS-dependent.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3