Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms of rat liver: their effect on enzyme activity

Author:

Yamashita A1,Watanabe M1,Tonegawa T1,Sugiura T1,Waku K1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

Abstract

When [14C]arachidonoyl-CoA was incubated with crude extracts of rat liver microsomes, [14C]arachidonic acid was incorporated into many proteins, suggesting that modification of these proteins with fatty acid, i.e. acylation, occurred. Using a [14C]arachidonyl-CoA labelling assay, 50 and 53 kDa proteins were purified from rat liver microsomes to near homogeneity by sequential chromatography on Red-Toyopearl, hydroxyapatite, heparin-Toyopearl, Blue-Toyopearl and UDP-hexanolamine-agarose. Acylation of the 50 and 53 kDa proteins occurred in the absence of any other protein, suggesting that these molecules catalyse autoacylation. The acylation was dependent on the length of the incubation period and the concentration of [14C]arachidonoyl-CoA. The 50 and 53 kDa proteins also had acyl-CoA-binding activity; initial rates of acyl-CoA binding and acylation were 0.25 and 0.004 min-1 respectively. The proteins also had weak but distinct acyl-CoA-hydrolysing activity (0.006 min-1). These results suggest that the proteins catalysed the sequential reactions of binding to acyl-CoA, autoacylation, and hydrolysis of fatty acid. N-terminal amino acid sequencing analysis showed these proteins to be UDP-glucuronosyltransferase (UDPGT) isoforms. UDPGT activity was inhibited by arachidonoyl-CoA. These results suggest that binding of acyl-CoA and acylation of UDPGT isoforms regulate the enzyme activities, implying a possible novel function for fatty acyl-CoA in glucuronidation, which is involved in the metabolism of drugs, steroids and bilirubin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3