Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs

Author:

Fang Weiyuan1,Zhang Guorui1,Yu Yali1,Chen Hongjie1,Liu Hong1ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China

Abstract

Abstract Objective: To explore the value of quantitative parameters of artificial intelligence (AI) and computed tomography (CT) signs in identifying pathological subtypes of lung adenocarcinoma appearing as ground-glass nodules (GGNs). Methods: CT images of 224 GGNs from 210 individuals were collected retrospectively and classified into atypical adenomatous hyperplasia (AAH)/adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC) groups. AI was used to identify GGNs and to obtain quantitative parameters, and CT signs were recognized manually. The mixed predictive model based on logistic multivariate regression was built and evaluated. Results: Of the 224 GGNs, 55, 93, and 76 were AAH/AIS, MIA, and IAC, respectively. In terms of AI parameters, from AAH/AIS to MIA, and IAC, there was a gradual increase in two-dimensional mean diameter, three-dimensional mean diameter, mean CT value, maximum CT value, and volume of GGNs (all P<0.0001). Except for the CT signs of the location, and the tumor–lung interface, there were significant differences among the three groups in the density, shape, vacuolar signs, air bronchogram, lobulation, spiculation, pleural indentation, and vascular convergence signs (all P<0.05). The areas under the curve (AUC) of predictive model 1 for identifying the AAH/AIS and MIA and model 2 for identifying MIA and IAC were 0.779 and 0.918, respectively, which were greater than the quantitative parameters independently (all P<0.05). Conclusion: AI parameters are valuable for identifying subtypes of early lung adenocarcinoma and have improved diagnostic efficacy when combined with CT signs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3