Histomorphological and ultrastructural cadmium-induced kidney injuries and precancerous lesions in rats and screening for biomarkers

Author:

Wan Xichen12,Xing Zelong12,Ouyang Jin23,Liu Hui2,Cheng Chengquan2,Luo Ting23,Yu Shiqun23,Meihua Li1ORCID,Huang Shaoxin124ORCID

Affiliation:

1. 1Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, P.R. China

2. 2Department of Social Science and Public Health, Medical school, Jiujiang University, Jiujiang, 332000, P.R. China

3. 3Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, P.R. China

4. 4School of Public Health, Qingdao University, 16 Ningde Road, Qingdao, Shandong, 266021, P.R. China

Abstract

Abstract Long-term exposure to cadmium (Cd) can severely damage the kidney, where orally absorbed Cd accumulates. However, the molecular mechanisms of Cd-induced kidney damage, especially the early biomarkers of Cd-induced renal carcinogenesis, are unclear. In the present study, we established a rat kidney injury model by intragastric administration of Cd to evaluate the morphological and biochemical aspects of kidney injury. We randomly divided Sprague-Dawley rats into control, low Cd (3 mg/kg), and high Cd (6 mg/kg) groups and measured biochemical indices associated with renal toxicity after 2, 4, and 8 weeks of treatment. The Cd-exposed mice had significantly higher Cd concentrations in blood and renal tissues as well as blood urea nitrogen (BUN), β2-microglobulin (β2-MG), urinary protein excretion, and tumor necrosis factor-α (TNF-α) levels. Furthermore, histopathological and transmission electron microscopy (TEM) observations revealed structural disruption of renal tubules and glomeruli after 8 weeks of exposure to the high Cd regimen. Besides, microarray technology experiments showed that Cd increased the expression of genes related to the chemical carcinogenesis pathway in kidney tissue. Finally, combining the protein–protein interaction (PPI) network of the Cd carcinogenesis pathway genes with the microarray and Comparative Toxicogenomics Database (CTD) results revealed two overlapping genes, CYP1B1 and UGT2B. Therefore, the combined molecular and bioinformatics experiments’ results suggest that CYP1B1 and UGT2B are biomarkers of Cd-induced kidney injury with precancerous lesions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3