Post-translational modification and proteolytic processing of urinary osteopontin

Author:

Christensen Brian1,Petersen Torben E.1,Sørensen Esben S.1

Affiliation:

1. Protein Chemistry Laboratory, Department of Molecular Biology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark

Abstract

OPN (osteopontin) is a highly phosphorylated glycoprotein present in many tissues and body fluids. In urine, OPN is a potent inhibitor of nucleation, growth and aggregation of calcium oxalate crystals, suggesting that it has a role in the prevention of renal stone formation. The role of OPN in nephrolithiasis is, however, somewhat unclear, as it may also be involved in urinary stone formation, and it has been identified among the major protein components of renal calculi. Most likely, the function of OPN in urine is dependent on the highly anionic character of the protein. Besides a very high content of aspartic and glutamic residues, OPN is subjected to significant PTM (post-translational modification), such as phosphorylation, sulfation and glycosylation, which may function as regulatory switches in promotion or inhibition of mineralization. In the present study, we have characterized the PTMs of intact human urinary OPN and N-terminal fragments thereof. MS analysis showed a mass of 37.7 kDa for the intact protein. Enzymatic dephosphorylation and peptide mass analyses demonstrated that the protein contains approximately eight phosphate groups distributed over 30 potential phosphorylation sites. In addition, one sulfated tyrosine and five O-linked glycosylations were identified in OPN, whereas no N-linked glycans were detected. Peptide mapping and immunoblotting using different monoclonal antibodies showed that the N-terminal fragments present in urine are generated by proteolytic cleavage at Arg228–Leu229 and Tyr230–Lys231.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3