Computational analysis of Cyclin D1 gene SNPs and association with breast cancer

Author:

Aftab Ayesha1,Khan Ranjha2ORCID,Shah Wasim2,Azhar Muhammad2,Unar Ahsanullah2ORCID,Jafar Hussain Hafiz Muhammad3,Waqas Ahmed4

Affiliation:

1. Department of Biological Sciences, International Islamic university, Islamabad 44000, Pakistan

2. The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Centre for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China

3. Shanghai Jiao Tong University, School of Medicine, Shanghai, China

4. Department of Zoology, Division of Science and Technology, University of Education Lahore, Multan Campus, Multan, Pakistan

Abstract

Abstract CCND1 encodes for Cyclin D1 protein and single-nucleotide polymorphisms (SNPs) can modulate its activity. In the present study, the impact of CCND1 SNPs on structure and/or function of Cyclin D1 protein using in silico tools was investigated. Our analysis revealed only one splice site SNP (c.1988+5G<A) can effect CCND1 function. Subsequently, 78 out of 169 missense variants were predicted as pathogenic by Polyphen2, SIFT, PROVEAN, SNPs&GO, and PANTHER, and 4/78 missense SNPs were further evaluated because these four SNPs were found to be reside in highly conserved region of Cyclin D1. However, they did not show any major impact on tertiary structure and domain of Cyclin D1 but overall R15S and A190S has displayed a significant diseased phenotype and an altered molecular mechanism predicted by MutPred, FATHMM, SNPeffect, SNAP2, and PredictSNP. Consistently, A190S, R179L, and R15S may also cause a decrease in stability of Cyclin D1 anticipated by I-Mutant, HOPE and SNP effect. Furthermore, the Kaplan–Meier plotter has explained that high expression of CCND1 is associated with less survival rate of breast cancer patients. Altogether our study suggests that c.1988+5G<A, R15S, R179L, and A190S SNPs could directly or indirectly destabilize Cyclin D1.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3