Emodin ameliorates renal injury in BXSB mice by modulating TNF-α/ICAM-1

Author:

Yuan Xinlu1,Dai Binbin2,Yang Liyan2,Lin Beiduo2,Lin Enqin2,Pan Yangbin23ORCID

Affiliation:

1. Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China

2. Department of Nephrology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China

3. Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China

Abstract

Abstract The purpose of the present study was to explore the effects of emodin on renal injury in a BXSB mouse model of lupus and its mechanisms. BXSB mice were fed different concentrations of emodin (0, 5, 10 and 20 mg/kg.d), and the levels of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α) and fibronectin (FN) levels in the glomeruli and serum levels of the anti-dsDNA antibody were determined. Mesangial cells (MCs) were cultured in vitro, and IgG-type anti-dsDNA antibody and/or emodin were added to the MC culture supernatant. In addition, TNF-α small interfering RNA (siRNA) was transfected into MCs to explore the mechanism of action of emodin. The results showed that the mice fed emodin presented decreases in the urinary protein content and glomerular TNF-α, ICAM-1 and FN levels (P<0.05). Moreover, the urine protein, TNF-α, ICAM-1 and FN levels were decreased in a dose-dependent manner (P<0.05). In vitro, the anti-dsDNA antibody group exhibited increased levels of ICAM-1 and TNF-α (P<0.05), and the anti-dsDNA antibody group showed myofibroblast-like structural changes. The aforementioned indexes were decreased in the emodin group (P<0.05), and the extent of transdifferentiation was significantly reduced. Moreover, the level of ICAM-1 decreased with the down-regulation of TNF-α (P<0.05). Emodin reduced the urine protein levels and serum levels of the anti-dsDNA antibody in a mouse model of lupus nephritis (LN). The underlying mechanism may be related to decreased levels of TNF-α, ICAM-1 and FN and the inhibition of dsDNA antibody-induced MC damage.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3