Computational exploration of cellular communication in skin from emerging single-cell and spatial transcriptomic data

Author:

Jin Suoqin1ORCID,Ramos Raul2

Affiliation:

1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, U.S.A.

Abstract

Tissue development and homeostasis require coordinated cell–cell communication. Recent advances in single-cell sequencing technologies have emerged as a revolutionary method to reveal cellular heterogeneity with unprecedented resolution. This offers a great opportunity to explore cell–cell communication in tissues systematically and comprehensively, and to further identify signaling mechanisms driving cell fate decisions and shaping tissue phenotypes. Using gene expression information from single-cell transcriptomics, several computational tools have been developed for inferring cell–cell communication, greatly facilitating analysis and interpretation. However, in single-cell transcriptomics, spatial information of cells is inherently lost. Given that most cell signaling events occur within a limited distance in tissues, incorporating spatial information into cell–cell communication analysis is critical for understanding tissue organization and function. Spatial transcriptomics provides spatial location of cell subsets along with their gene expression, leading to new directions for leveraging spatial information to develop computational approaches for cell–cell communication inference and analysis. These computational approaches have been successfully applied to uncover previously unrecognized mechanisms of intercellular communication within various contexts and across organ systems, including the skin, a formidable model to study mechanisms of cell–cell communication due to the complex interactions between the different cell populations that comprise it. Here, we review emergent cell–cell communication inference tools using single-cell transcriptomics and spatial transcriptomics, and highlight the biological insights gained by applying these computational tools to exploring cellular communication in skin development, homeostasis, disease and aging, as well as discuss future potential research avenues.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3