Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase β (HPTP β) using synthetic phosphopeptides

Author:

Harder K W1,Owen P1,Wong L K H1,Aebersold R1,Clark-Lewis I1,Jirik F R1

Affiliation:

1. Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada

Abstract

The intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) (44 kDa) was expressed in bacteria, purified using epitope ‘tagging’ immunoaffinity chromatography, and characterized with respect to kinetic profile, substrate specificity and potential modulators of enzyme activity. A chromogenic assay based on the Malachite Green method was employed for the detection of inorganic phosphate (Pi) released from phosphopeptides by HPTP beta. This assay, modified so as to improve its sensitivity, was adapted to a 96-well microtitre plate format, and provided linear detection between 50 and 1000 pmol of Pi. The cytoplasmic domain of HPTP beta was strongly inhibited by vanadate, molybdate, heparin, poly(Glu, Tyr) (4:1) and zinc ions. In order to explore the substrate preferences of this PTPase, we generated 13-residue synthetic phosphotyrosine-containing peptides that corresponded to sites of physiological tyrosine phosphorylation. HPTP beta demonstrated kcat. values between 76 and 258 s-1 using four different phosphopeptides. The substrate preference of HPTP beta was in the order srcTyr-527 > PDGF-RTyr-740 > ERK1Tyr-204 >> CSF-1RTyr-708 with Km values ranging from 140 microM to greater than 10 mM. The variations in affinity were probably due to differences among the four phosphopeptides compared, particularly with respect to the character of the charged amino acids flanking the phosphotyrosine residue.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3