WNT signaling and cancer stemness

Author:

Katoh Masuko1,Katoh Masaru123ORCID

Affiliation:

1. 1M & M Precision Medicine

2. 2Department of Omics Network, National Cancer Center, Japan

3. 3Department of Clinical Genomics, National Cancer Center, Japan

Abstract

Abstract Cancer stemness, defined as the self-renewal and tumor-initiation potential of cancer stem cells (CSCs), is a cancer biology property featuring activation of CSC signaling networks. Canonical WNT signaling through Frizzled and LRP5/6 receptors is transmitted to the β-catenin-TCF/LEF-dependent transcription machinery to up-regulate MYC, CCND1, LGR5, SNAI1, IFNG, CCL28, CD274 (PD-L1) and other target genes. Canonical WNT signaling causes expansion of rapidly cycling CSCs and modulates both immune surveillance and immune tolerance. In contrast, noncanonical WNT signaling through Frizzled or the ROR1/2 receptors is transmitted to phospholipase C, Rac1 and RhoA to control transcriptional outputs mediated by NFAT, AP-1 and YAP-TEAD, respectively. Noncanonical WNT signaling supports maintenance of slowly cycling, quiescent or dormant CSCs and promotes epithelial–mesenchymal transition via crosstalk with TGFβ (transforming growth factor-β) signaling cascades, while the TGFβ signaling network induces immune evasion. The WNT signaling network orchestrates the functions of cancer-associated fibroblasts, endothelial cells and immune cells in the tumor microenvironment and fine-tunes stemness in human cancers, such as breast, colorectal, gastric and lung cancers. Here, WNT-related cancer stemness features, including proliferation/dormancy plasticity, epithelial–mesenchymal plasticity and immune-landscape plasticity, will be discussed. Porcupine inhibitors, β-catenin protein–protein interaction inhibitors, β-catenin proteolysis targeting chimeras, ROR1 inhibitors and ROR1-targeted biologics are investigational drugs targeting WNT signaling cascades. Mechanisms of cancer plasticity regulated by the WNT signaling network are promising targets for therapeutic intervention; however, further understanding of context-dependent reprogramming trajectories might be necessary to optimize the clinical benefits of WNT-targeted monotherapy and applied combination therapy for patients with cancer.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3