Fibronectin–collagen binding and requirement during cellular adhesion

Author:

Gold Leslie I.1,Pearlstein Edward1

Affiliation:

1. Irvington House Institute and Department of Pathology, New York University Medical Center, 550 First Avenue, New York, NY 10016, U.S.A.

Abstract

Fibronectin isolated from human plasma and from the extracellular matrices of cell monolayers mediates the attachment in vitro and spreading of trypsin-treated cells on a collagen substratum. Fibronectin-dependent kinetics of cellular attachment to collagen were studied for several adherent cell types. It was shown that trypsin-treated human umbilical-cord cells, mouse sarcoma CMT81 cells, endothelial cells, and human fibroblasts from a patient with Glanzmann's disease were completely dependent on fibronectin for their attachment to collagen, whereas guinea-pig and monkey smooth-muscle cells and chick-embryo secondary fibroblasts displayed varying degrees of dependence on fibronectin for their attachment. Radiolabelled human plasma fibronectin possessed similar affinity for collagen types I, II and III from a variety of sources. The fibronectin bound equally well to the collagens with or without prior urea treatment. However, in the fibronectin-mediated adhesion assay using PyBHK fibroblasts, a greater number of cells adhered and more spreading was observed on urea-treated collagen. Fibronectin extracted from the extracellular matrix of chick-embryo fibroblasts and that purified from human plasma demonstrated very similar kinetics of complexing to collagencoated tissue-culture dishes. Fibronectin from both sources bound to collagen in the presence of 0.05–4.0m-NaCl and over the pH range 2.6–10.6. The binding was inhibited when fibronectin was incubated with 40–80% ethylene glycol, the ionic detergents sodium dodecyl sulphate and deoxycholate, and the non-ionic detergents Nonidet P-40, Tween 80 and Triton X-100, all at a concentration of 0.1%. From these results we proposed that fibronectin–collagen complexing is mainly attributable to hydrophobic interactions.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3