Electrogenicity of phosphate transport by renal brush-border membranes

Author:

Béliveau R1,Ibnoul-Khatib H1

Affiliation:

1. Laboratoire de Membranologie Moléculaire, Département de Chimie, Université du Québec à Montràal, C.P. 8888, succursale A, Montràal, Quàbec, Canada H3C 3P8, and Groupe de Recherche en Transport Membranaire, Università de Montràal, Montràal, Quàbec, Canada

Abstract

Phosphate uptake by rat renal brush-border membrane vesicles was studied under experimental conditions where transmembrane electrical potential (delta psi) could be manipulated. Experiments were performed under initial rate conditions to avoid complications associated with the dissipation of ion gradients. First, phosphate uptake was shown to be strongly affected by the nature of Na+ co-anions, the highest rates of uptake being observed with 100 mM-NaSCN (1.010 +/- 0.086 pmol/5 s per micrograms of protein) and the lowest with 50 mM-Na2SO4 (0.331 +/- 0.046 pmol/5 s per micrograms of protein). Anion substitution studies showed that potency of the effect of the co-anions was in the order thiocyanate greater than nitrate greater than chloride greater than isethionate greater than gluconate greater than sulphate, which correlates with the known permeability of the membrane to these anions and thus to the generation of transmembrane electrical potentials of decreasing magnitude (inside negative). The stimulation by ion-diffusion-induced potential was observed from pH 6.5 to 8.5, indicating that the transport of both monovalent and divalent phosphate was affected. In addition, inside-negative membrane potentials were generated by valinomycin-induced diffusion of K+ from K+-loaded vesicles and showed a 57% stimulation of phosphate uptake, at pH 7.5. Similar experiments with H+-loaded vesicles, in the presence of carbonyl cyanide m-chlorophenylhydrazone gave a 50% stimulation compared with controls. Inside-positive membrane potentials were also induced by reversal of the K+ gradient (outside greater than inside) in the presence of valinomycin and gave 58% inhibition of phosphate uptake. The membrane-potential dependency of phosphate uptake was finally analysed under thermodynamic equilibrium, and a stimulation by inside-negative potential was observed. The transport of phosphate was thus driven against a concentration gradient by a membrane potential, implicating the net transfer of a positive charge during the translocation process. These results indicate a major contribution of electrical potential to phosphate uptake in renal brush-border membranes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3