Development of an OTUD1 ubiquitin variant inhibitor

Author:

Liu Qi1,Mallette Evan1,Zheng Hui2,Zhang Wei13ORCID

Affiliation:

1. 1Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph N1G 2W1, Canada

2. 2International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu 215123, China

3. 3CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada

Abstract

OTUD1 (Ovarian tumor domain-containing deubiquitinase 1) is a member of the OTU domain-containing deubiquitinase family of enzymes involved in immunoregulation and tumorigenesis pathways. OTUD1 consists of three distinct regions: an unstructured N-terminal region, an OTU-fold catalytic domain, and a ubiquitin-interacting motif (UIM) containing region. Enhanced enzymatic activity and a strong preference for K63-linked substrates are imparted by the UIM containing region. We used phage display with a ubiquitin variant (UbV) library to identify binders for OTUD1 lacking the unstructured N-terminal region (OTUD1OTU + UIM) in an attempt to identify inhibitors bridging the catalytic domain and the UIM containing region. Two UbVs were identified (UbVOD.1 and UbVOD.2) with high affinity and specificity for OTUD1. Of the UbVs identified, UbVOD.1 inhibited OTUD1 activity towards mono-Ub and K63-linked di-Ub substrates in vitro with single-digit nanomolar IC50 and potently inhibited deubiquitinase activity with poly-Ub chains of other linkages. In vivo expression of UbVOD.1 alone was unstable, however as a di-UbV, global deubiquitination and deubiquitinase activity with the OTUD1 substrate RIPK1 were inhibited. Herein we describe the development of molecular tools for exploring the activity of OTUD1 in a cellular context, towards protein-based therapeutics.

Funder

CIHR project grant

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3