A multiplex loop-mediated isothermal amplification assay for rapid screening of Acinetobacter baumannii and D carbapenemase OXA-23 gene

Author:

Yang Rungong1,Zhang Honghong2,Li Xiaoxia3,Ye Ling2,Gong Meiliang3,Yang Jinghui2,Yu Jihong3,Bai Jie3

Affiliation:

1. Department of Orthopedics, First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China

2. Institute of Geriatrics/Key Laboratory of Normal Aging and Geriatrics, Chinese PLA General Hospital, Beijing 100853, China

3. Clinical Lab of Nanlou Department, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China

Abstract

Background: Acinetobacter baumannii is a health burden responsible for various nosocomial infections, and bacteremia in particular. The resistance of A. baumannii to most antibiotics including carbapenem has increased. OXA-23-producing A. baumannii is the chief source of nosocomial outbreaks with carbapenem-resistant A. baumannii. Successful antibiotic treatment relies on the accurate and rapid identification of infectious agents and drug resistance. Here, we describe a multiplex loop-mediated isothermal amplification (LAMP) assay for simultaneous and homogeneous identification for A. baumannii infection screening and drug-resistance gene detection. Methods: Four primer pairs were designed to amplify fragments of the recA gene of A. baumannii and the oxa-23 gene. The reaction with a 25 μl of final volume was performed at 63°C for 60 min. For comparative purposes, we used a traditional method of bacterial identification to evaluate assay efficacy. Results: The multiplex LAMP assay enables simultaneous and homogeneous detection of the recA gene of A. baumannii and the oxa-23 gene and requires less than 21 min with no pre-requisite for DNA purification prior to the amplification reaction. The detection is specific to A. baumannii, and the coincidence rate of the multiplex LAMP and the traditional method was 100%. Conclusions: Our data indicate that the multiplex LAMP assay is a rapid, sensitive, simultaneous and homogeneous method for screening of A. baumannii and its drug-resistance gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3