Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats

Author:

Feng Dongcheng1,Yao Jihong2,Wang Guangzhi1,Li Zhenlu1,Zu Guo1,Li Yang1,Luo Fuwen1,Ning Shili1,Qasim Wasim1,Chen Zhao1,Tian Xiaofeng1

Affiliation:

1. Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China

2. Department of Pharmacology, Dalian Medical University, Dalian 116044, China

Abstract

Intestinal epithelial oxidative stress and apoptosis constitute key pathogenic mechanisms underlying intestinal ischemia/reperfusion (I/R) injury. We previously reported that the adaptor 66 kDa isoform of the adaptor molecule ShcA (p66Shc)-mediated pro-apoptotic pathway was activated after intestinal I/R. However, the upstream regulators of the p66Shc pathway involved in intestinal I/R remain to be fully identified. Here, we focused on the role of a prolyl-isomerase, peptidyl–prolyl cis–trans isomerase (Pin1), in the regulation of p66Shc activity during intestinal I/R. Intestinal I/R was induced in rats by superior mesenteric artery (SMA) occlusion. Juglone (Pin1 inhibitor) or vehicle was injected intraperitoneally before I/R challenge. Caco-2 cells were exposed to hypoxia/reoxygenation (H/R) in vitro to simulate an in vivo I/R model. We found that p66Shc was significantly up-regulated in the I/R intestine and that this up-regulation resulted in the accumulation of intestinal mitochondrial reactive oxygen species (ROS) and massive epithelial apoptosis. Moreover, intestinal I/R resulted in elevated protein expression and enzyme activity of Pin1 as well as increased interaction between Pin1 and p66Shc. This Pin1 activation was responsible for the translocation of p66Shc to the mitochondria during intestinal I/R, as Pin1 suppression by juglone or siRNA markedly blunted p66Shc mitochondrial translocation and the subsequent ROS generation and cellular apoptosis. Additionally, Pin1 inhibition alleviated gut damage and secondary lung injury, leading to improvement of survival after I/R. Collectively, our findings demonstrate for the first time that Pin1 inhibition protects against intestinal I/R injury, which could be partially attributed to the p66Shc-mediated mitochondrial apoptosis pathway. This may represent a novel prophylactic target for intestinal I/R injury.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3